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SUMMARY 

The problem of fluid motion in a cavity with rigid sidewalls that is heated uniformly from below is 
studied by the finite-element method. The techniques of parameter-stepping and monitoring the 
determinant of the Jacobian matrix to find bifurcations are used. Results are presented for width-to- 
height ratios in the range 1 to 4, and for three different boundary conditions on the horizontal surfaces, 
namely both rigid, both free, and rigid bottom with free top. The non-linear branches above the critical 
Rayleigh number are examined. Extensions to non-Boussinesq flow are trivial. 
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INTRODUCTION 

The BCnard problem of the motion of the fluid in a rectangular cavity that is uniformly 
heated from below is of practical and theoretical importance. It has applications in such 
diverse branches of physics as meteorology and astrophysics, and it provides a simple 
example of bifurcations in a fluid flow problem. 

The physical phenomena can be summarized as follows. If the Rayleigh number Ra (which 
is a dimensionless measure of the temperature difference across the cavity) is less than a 
certain critical value Racrit then there is no flow and a uniform vertical temperature gradient. 
If Ra is greater than Racri, then the no-flow state is unstable, and steady convection cells 
form. Rauit and the number of convection cells that form depend upon the width-to-height 
ratio of the cavity, and upon the boundary conditions upon the walls of the cavity. 

The theory of the effect is as follows. At the critical Rayleigh number there is a bifurcation 
of the solution of the non-linear steady flow equations. If Ra is less than Radt then there is 
only the no-flow solution, whereas if Ra is greater than Rauit there are (at least) three 
solutions namely the no-flow solution, and two different senses of flow. This is illustrated 
schematically in Figure 1. The no-flow solution is unstable as a solution of the time 
dependent equations if Ra is greater than Radt. 

If Ra is only slightly greater than Race, then the flow velocities are small, and so Racrit can 
be obtained from a linear eigenvalue problem derived by neglecting the non-linear terms in 
the steady flow equations. However, only a very limited number of different boundary 
conditions can be solved analytically. In particular the case of a finite cavity with rigid walls 
on all sides requires numerical treatment. A numerical approach is also necessary to obtain 
the magnitude of the flow for values of Ra greater than Racet as it is determined by the 
neglected non-linear terms. 
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t Anti- clockwise eddy 

I Clockwise eddy 

Figure 1. Schematic diagram of the bifurcation in the BBnard problem at Ra&t. The signed amplitude of the flow is 
plotted against Ra. (The flow on the various branches is indicated by the pictures) 

We show here how a standard finite-element program for buoyancy-driven flow can be 
used to obtain RacSt as a function of the width-to-height ratio of the cavity, for various 
different boundary conditions; and also to study the flow at values of Ra greater than Racrit . 
The techniques used are parameter-stepping (method of Euler-Newton and 
bifurcation search by monitoring the determinant of the Jacobian matrix.2 These are very 
easy to implement, and extremely cheap to run. 

There are considerable advantages to using a standard finite element program rather than 
a program specially designed for the BCnard problem. It is trivial to change the boundary 
conditions, and extensions to non-Boussinesq flow are simple. The flow for Ra greater than 
Racrit can be studied easily. The method is applicable to studying bifurcations in any field 
problem, for example flow in an expanding ~ h a n n e l . ~  

The numerical results reveal some of the rich structure of the BCnard problem. Compari- 
sons with analytic or semi-analytic solutions, in cases where they exist, show that the method 
is very accurate. 

THE BOUSSINESQ EQUATIONS 

The Bknard problem is illustrated in Figure 2. The two-dimensional steady Boussinesq 
equations for buoyancy-driven flow in the cavity are, in non-dimensional form: 

a u  au ap 
ax a y  ax 

u-+v-+---Prv2u = o  
av av ap 
ax ay  ay 

u - + v - +- - Pr V2v - RaPrT = 0 

aT a~ 
ax ay 

u -+ u--V2T=0 
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for 
Figure 2. The Btnard problem 

o s x c p ,  O s y s l  

where u and are velocity components in the x and y directions, p is pressure, T is 
temperature, p is the width-to-height ratio of the cavity, Pr is the Prandtl number, and R a  is 
the Rayleigh number. (In terms of the physical quantities 

U 

K 
P r = -  

and 
(Y (AT) gH3 

R a  = 
K V  

where u is the viscosity of the fluid, K is the thermal diffusion coefficient of the fluid, (Y is the 
coefficient of thermal expansion of the fluid, AT is the temperature difference across the 
cavity, g is the acceleration due to gravity, and H is the height of the cavity.) 

Throughout the study the sidewalls of the cavity were taken to be rigid. We considered 
three different sets of boundary conditions on the horizontal walls, namely both rigid, both 
free, and rigid bottom with free top. (The second of these may seem somewhat artificial, but 
it actually has relevance to meteorology, and more importantly is more tractable analytically, 
so that some results exist which can be compared with the present finite-element solution.) 
On rigid walls both components of velocity were taken to be zero, whereas on free walls the 
normal component only was taken to be zero. The boundary conditions on temperature are 

T = 0 ,  y = l  
T = l ,  y = O  

aT 
- = O ,  x = O  and x = p  
ax 

Another form of the equations can be obtained by changing variables from x to x*  where 

x* = x / p  

The domain of x*, y is then the unit square and is independent of p, which now appears in 
the equations instead. For example, the first equation of (1) becomes 
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This formulation has advantages for parameter stepping since the dependence upon the 
parameter f! has been made explicit. 

u = o  

The no-flow state 

v = o  

p = ~ u R ( y  - +y2)  + constant 
(3) 

T = l - y  

is always a solution of the equations (1) and the boundary conditions. (It may not be the only 
one, and indeed we shall show numerically that for Ra greater than Racfit there are more 
solutions.) 

THE NUMERICAL METHODS 

The finite-element method for discretizing equations such as (1) or (2) is standard, and well 
described e l~ewhere .~  We used six-node quadratic triangles to model velocities and tempera- 
ture, and three-node linear triangles to model pressure, on grids such as that shown in Figure 
3 .  (Mixed interpolation is necessary to ensure that the discrete linear equations for the 
pressure have a unique s ~ l u t i o n , ~ . ~  given the velocities and temperature.) 

The finite-element method leads to a set of coupled non-linear algebraic equations for the 
nodal values of the fields, which can be written 

q(X;a)=O, 1 ~ i s N  (4) 

Figure 3. A typical finite-element grid of six-node quadratic triangles used for the study. (The grid is 17 X 17 in the 
notation of this paper) 



THE BENARD PROBLEM 131 

where X is the vector of unknown nodal field values (of which there are N ) ,  and a is the 
vector of parameters (including Ra, Pr, and p in the present Btnard study). In order to solve 
these equations for given parameter values it is necessary to linearize them and iterate. We 
use the Newton-Raphson method of linearization about the latest estimate, but quasi- 
Newton-Raphson linearization about an earlier estimate could equally be used. The 
Newton-Raphson scheme is: choose an initial guess Xo; then solve successively for 
X1, X2, . .$. , from the linear system 

aF, (X" ; a) axi (Y"-X;) = -F,(X"; a) 

(where we have used the Einstein summation convention). This introduces the Jacobian 
matrix J where 

The Newton-Raphson scheme converges quadratically, provided that the initial guess is good 
enough, whereas the quasi-Newton-Raphson scheme only converges linearly. 

We solve the linear system (5) by the (direct) frontal method of Gaussian elimination. J is 
decomposed into the product of lower and upper triangular matrices L and U as 

J=LU (6) 
and then equations of the form 

are solved by solving successively 

and 

Jd = f  

Le=f 

Ud=e  

Solving these systems is easy and very cheap, so the cost of the elimination is dominated by 
the contribution from the LU decomposition. 

The scheme described above has an unexpected bonus. Consider solving (4) for several 
sets of values a(,), a(*), . . . ,of the parameters a. The cost of finding the solution for given 
values a(2) of the parameters is much reduced if the initial guess is good, and an obvious 
choice is the solution X(,) at neighbouring values a(,) of the parameters. An even better guess 
is 

and one better still is 

and so on. 
Now from (4) 

Thus (aXJau,) is determined by a linear system with the same matrix J as in ( 5 ) ,  but a 
different right-hand side, and so once the solution X for given values a of the parameter has 
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been determined (aq./du,) can be found very cheaply, since it is not necessary to repeat the 
LU decomposition of J. (Further, by differentiating (9) with respect to a, it can be seen that 
(a2X,/da, da,), and higher derivatives, are also determined by linear systems with the same 
matrix J and so can be calculated very cheaply.) 

It is thus possible to obtain a very good initial guess for the solution at parameter values 
a(,,, once the solution at values a(1) is known. We have only used (7), but (8) may be better 
still. Now in many non-linear problems it may not be possible, at some values a(,,) of the 
parameters, to  find, a priori, a good-enough initial guess for the Newton-Raphson iterations 
to converge. However if it is possible to calculate the solution at one set of values a(o), then 
by stepping through the solutions at a series of values between a(o) and a(,), a good enough 
initial guess can be obtained. This is Euler-Newton continuation in a 

Parameter stepping can be implemented in many ways. The length of the step may be fixed 
by the user (either as a constant, or as a specified sequence of values) or some form of 
automatic choice of step size (as in Gear’s method for solving stiff systems of ordinary 
differential equations) can be incorporated into the program. A flow chart for one such 
automatic method is given in Figure 4. The step length is chosen to be as large as possible 
consistent with rapid convergence of the Newton-Raphson iterations. The convergence rate 
of the iterations is estimated from the iterations at previous parameter values, as is the error 
in the ‘predictor’ (7), and an appropriate step size is chosen. (It can be shown that, if the 
initial guess is good enough, then the successive errors A, in the Newton-Raphson iterates 
behave like 

A,, = k(A,,-l)2 

where k is a constant, and so successive errors are 

or 
Ao, kAg, k(kAg)2= k3h;,. . . , 

cr, cr , cr , cr , . . . , 2 4 8  

r = k A,, = Aolc 

This is used to calculate the convergence rate of the iterations.) 
The algorithm given in Figure 4 for the choice of ha was designed to keep the 

convergence rate r for the solution at each parameter value approximately equal to 0.1, thus 
giving convergence to four significant figures in three Newton iterations. We found the 
algorithm to behave well in practice. 

The scheme described in detail above makes it possible to study very cheaply the 
behaviour of the solution to (4) as a function of the parameters. 

At first sight there might seem to be a problem if there are any bifurcations in the solution, 
but in practice the initial guess obtained by parameter-stepping is so good that there is 
usually no problem in following one branch, just stepping past bifurcations as illustrated 
schematically in Figure 5 .  

Further, and most importantly, it is actually possible to locate the position of any 
bifurcations on the branch by monitoring the determinant’ of the Jacobian J. At bifurcations 
(and limit points) J becomes rank deficient, which gives rise to a zero of det \J(.  Thus, 
provided that the zero is simple, it is easy to locate bifurcations by observing the sign of 
det 131, which differs on opposite sides of the bifurcation. Now det IJI is very easily evaluated 
because from (6)  

det IJI = (det ILl)(det (Ul) 
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a + 

X + y + - A a  

i + i + l  

= a(i) + ha 

a& 
aa 
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5 

Solve nonlinear equations 
for X(i)  by Newton-Raphson 
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failed to 

converge 

1 converged 

Calculate the convergence 
rate r of the iterations 

I 

I Solve the linear equations I 1 for 2 using the 

I stored LU decomposition I 
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I I 
No 

I i 

a x ,  ay-, 
Estimate from - , - 1 aa* aa aa 

Choose a new step size Aa such 
that the Newton-Raphson iterations 
are estimated to converge rapidly 
at a(i, + Aa 

Figure 4. Flow chart for an automatic step-length choice algorithm 

and, since L and U are triangular matrices, their determinants are just the products of their 
diagonal entries. (If pivoting is used in the LU decomposition then this introduces a sign 
factor which is easily calculated.) In practice the numbers involved are so large that we 
calculate the sign of det IJI, and the logarithm of the absolute value of det IJI. 

Thus using the above techniques it is possible to follow the behaviour of the solution as a 
parameter changes, and to locate any bifurcations. One further technique needs to be 
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Figure 5. Schematic diagram of parameter stepping, showing its ability to step past bifurcations. The lines- 
indicate the predictor steps using (7), and the lines-indicate the Newton-Raphson steps 

introduced. The solutions on the other branches at a bifurcation can be found as follows. The 
equations (4) are perturbed slightly, for example to 

(10) 

for some X* and small E. Then the structure of the solutions near the bifurcation changes to 
that illustrated in Figure 6, and parameter-stepping with small step sizes will follow the 
solution onto a perturbation of one of the other branches. Once sufficiently far from the 

F,(X; a) - E&(X*; a) = 0 

/ 

t / 
/ 

/ 

Figure 6. Schematic diagram showing the effect of the perturbation (10) o n  the bifurcation. The unperturbed 
bifurcation is shown dashed 
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bifurcation, E can be set to zero and the branch followed properly. The other branch can of 
course be found with an initially negative E .  Any choice of E and X" that perturbs the 
equations and destroys the bifurcation is adequate, although of course if E is made too small 
then many very small steps are needed to follow the solution onto a perturbation of one of 
the branches. 

One final remark can be added. It can be shown7 that an eigenvalue with negative real part 
of J for the steady state equations corresponds to instability of the solution as a solution of 
the time-dependent equations. Since det (JI is just the product of the eigenvalues of J, then it 
is easy to see that there is at least one negative eigenvalue of J if det IJ1 is negative, and so 
the solution is unstable. If det IJ) is positive then it is not possible to  say that there are no 
eigenvalues of J with negative real part, (as there may be an even number of such 
eigenvalues of course). Thus, in regions where det (JI is positive, further analysis is needed to 
determine whether or not the solution is unstable or stable. 

RESULTS AND REMARKS 

We used the above techniques to study the bifurcations from the no-flow solution in the 
BCnard problem. (Note that, contrary to the conclusions of Reference 8, we experienced no 
difficulty in using piecewise-linear basis functions for pressure, even though the analytic 
pressure in the no-flow state is quadratic. The finite-element method gave a good approxi- 
mation to the analytic solution without any problems.) 

First, we illustrate the method of bifurcation search by monitoring the determinant of the 
Jacobian matrix. We present in Table I values of the sign, absolute value and logarithm of 
the absolute value of det IJ1 at various Ra, for the no-flow solution to the BCnard problem 
with rigid walls on all sides, and width-to-height ratio 1, on a 9 x 9  grid. (We use the 
convention that an A4 x N grid has M nodes horizontally and N nodes vertically.) It is easy to 
see that there are bifurcations between Ra = 2650 and Ra = 2700 and between Ra = 7000 
and Ra = 8000. (The negative sign of det IJI shows that the no-flow state must be unstable 
between Ra = 2700 and Ra = 7000.) Values of det IJI versus Ra for values of Ra between 
2400 and 2700 are shown in the graph of Figure 7. It is possible to  locate the position of the 
bifurcation by interpolation between values of det \JI on either side of the bifurcation, leading 
to  the value 2652. This corresponds to Racritr of course. 

Table I. det IJ( versus Ra for the rigid/rigid case, width- 
to-height ratio 1, on a 9 x 9 grid 

Ra sign det IJl log (det la() det IJI 

10 
100 

2400 
2500 
2650 
2700 
3000 
5000 
7000 
8000 

10,000 
+ 
+ 

72.2 
72.1 
68.7 
68.2 
63.1 
66.9 
68.7 
69.3 
66.5 
68.2 
69.0 

2-19 x 1o3l 
2-04 x 1o3l 
6.89 x loz9 
3.94 x loz9 
2.44 x loz7 

-6.97 x loz9 

4.29 x loz9 

-1.15 x loz9 
- 1 . 2 9 ~  lo3' 
-7.29 X 10" 

9.11 x loz9 
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Figure 7. Det \J\ versus Ra for the rigidirigid case, for width-to-height ratio 1, on a 9 x 9  grid, for Ra in the range 
2400 to 2700. The straight line is a fit by eye to the values 

The calculation was repeated on a 17 x 17 grid in order to check the dependence of the 
bifurcation value on the grid spacing. The first bifurcation on a 17 x 17 grid was at 
Ra = 2612. Thus a quite coarse mesh produced very accurate results. 

The technique described at the end of the previous section was used to perturb the 
solution onto the other branches. (A perturbation of the form suggested in (10) was used, 
with E = 0-01 and X" corresponding to a velocity field of order 1, which was neither even nor 
odd). The other branches leading from the bifurcation at R a  = 2650 were thereby identified 
as one-cell solutions, and the other branches leading from the bifurcation at Ra = 7128 were 
identified as two-cell solutions. 

Figure 8 shows streamlines for the one-cell solution at Ra = 10,000 on a 17 x 17 grid Lind 
Figure 9 shows the isotherms. Figure 10 shows the streamlines for the two-cell solutioli at 
Ra = 10,000 on a 17x 17 grid and Figure 11 shows the isotherms. 

Figure 12 shows a graph of the square of the amplitude of the one-cell solution on a 9 x 9 
grid, (measured by the Euclidean norm of the nodal velocity values) plotted against Ra. 
According to theory this should be a straight line in the neighbourhood of the bifurcation. As 
can be seen the graph is linear over a very large region. 
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m 

Figure 8. Streamlines for the one-cell solution on Ra = 10,000 on a 17 x 17 grid for the rigid/rigid case, at 
width-to-height ratio 1 

Once we had established the feasibility of the method we used it to make a detailed study 
of the BCnard problem with rigid side walls for width-to-height ratios in the range 1 to 4, and 
for the three different boundary conditions of rigid top and bottom, free top and bottom, and 
rigid bottom with free top. The bifurcations from the no-flow branch were determined as 
above, by monitoring det on this branch. The results are presented in Table I1 and Figure 
13 for the rigid/rigid case; in Table I11 and Figure 14 for the free/free case; and in Table IV 
and Figure 15 for the rigid/free case. 

Results of Luijkx and Platteng for the rigid/rigid case and Hall and Walton" for the 
free/free case are also presented for comparison. 

At various width-to-height ratios the flow was triggered in the manner described above, 
and the number of convection cells determined. As the width-to-height ratio is increased the 
lowest bifurcation value of Ra changes from a branch corresponding to a one-cell solution to 
a branch corresponding to a two-cell solution, and then to a branch corresponding to a 
three-cell solution, and so on. The separation between the minima of the various branches is 
nearly constant for each boundary condition. This implies that there is a preferred convec- 
tion cell width which is approximately 1.02 for the rigid/rigid case, 1.18 for the rigid/free 
case, and 1.58 for the free/free case. The analytic values for an infinite width-to-height ratio 
are 1.02, 1.17 and 1.42, respectively. 
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Figure 9. Isotherms for the one-cell solution of Figure 8 

Figure 10. Streamlines at Ra = 10,000 for the two-cell solution on a 17 x 17 grid for the rigid/rigid case, at width- 
to-height ratio 1 
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Figure 11. Isotherms for the two-cell solution at Ra = 10,000 on a 17x 17 grid for the rigid/rigid case, at 
width-to-height ratio 1 

Figure 12. The square of the amplitude of the solution (measured by the Euclidean norm of the velocities) versus 
Ra for the one-cell solution in the rigid/rigid case at width-to-height ratio 1. Below Ra = 7000 the values are 

indistinguishable from the straight line fit to the values just above Ra,, = 2600 
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Table 11. Lowest few bifurcation values of R a  for the rigidhigid case 

Width-to-height 
Ratio Grid Bifurcation values of R a  

- 
1.0 
1.0 
1.0 
1.0 
1.2 
1.4 
1-6 
1.6 
1-6 
1.8 
1.8 
1.8 
1.9 
2.0 
2.0 
2.0 
2.2 
2.2 
2.4 
2-4 
2.6 
2.6 
2.8 
2.8 
3.0 
3.0 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 

5 x 5  
9 x 9  

17x 17 
21 x 21 

9 x 9  
9 x 9  
9 x 9  

1 7 x 9  
33x9 
9 x 9  

1 7 x 9  
33x9 
1 7 x 9  
9 x 9  

1 7 x 9  
33x9 
9 x 9  

1 7 x 9  
9 x 9  

17x9 
9 x 9  

1 7 x 9  
9 x 9  

17x9 
9 x 9  

17x9 
33x9 
33x9 
33x9 
33x9 
33x9 
33x9 

3091 
2665 
2588 
2612 
2353 
2332 
2438 
2434 
2433 
2227 
2218 
2202 
2122 
2049 
2056 

1961 
1988 
1947 
1976 
1740 
2000 
1576 
1978 
1450 
1916 
1901 
1872 
1866 
1875 
1874 
1844 

9812 
7130 
6774 
649 1 
4432 
3190 
2564 
247 1 
2462 
2588 
2591 
2583 
2653 
2563 
2650 
2629 
2250 
2453 
1956 
2236 
1942 
2079 
1981 
2038 

207 1 
2060 
2038 
1977 
1917 
1891 
1908 

16,139 41,223 
21,406 25,032 

11,684 
7286 
5039 
5027 

3829 
3917 

3607 
3372 
346 1 
3427 
3534 
3573 
3882 
3509 3882 

3022 4095 

2696 

2504 

As the width-to-height ratio p was increased and the number of convection cells at the 
critical Rayleigh number increased, then it became necessary to increase the number of 
nodes in the horizontal direction to obtain accurate results. This is hardly surprising since a 
9 x 9  grid cannot be expected to support a solution with a large number of cells. 

The results are in remarkable agreement with other numerical results, and such analytic 
results as exist. The error is typically 1 per cent for Racrit (which corresponds to the lowest 
bifurcation of course). The following observation explains this accuracy. As already stated, 
the critical Rayleigh number, which is a bifurcation from the no-flow state, can be obtained 
from a linear eigenvalue problem. In a roundabout fashion the finite element method is 
making a Rayleigh-Ritz approximation for this problem, and this is well known to give a 
second-order-accurate approximation to the lowest eigenvalue. One would not expect quite 
such accuracy from a coarse grid when studying bifurcations for a truly non-linear problem, 
as the grid has to be fine enough to adequately represent the non-linear solution. 
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Best results 

Luijkx and Platten 

- 
--- Coarse (9x9)  grid 
-------. 

Figure 13. Bifurcation values versus width-to-height ratio for the rigidhgid case 

One feature of our results deserves comment. We expected that the bifurcation diagrams 
should be as shown in Figure 16. However the curves in the encircled area do not cross in 
practice but are as shown in the insert. We believe that this may be due to discretization 
error breaking the degeneracy of the solutions (of the same parity) at the cross-over point, 
but we were unable to verify this. Although refining the grid by a factor of two in both 
directions changed the curves slightly the gap remained much the same. 

Finally, we used parameter-stepping to  follow the non-linear branch from the second 
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Table 111. Lowest few bifurcation values of R a  for the rigid/free case 

Width- to-height 
ratio Grid Bifurcation values of R a  

1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 

9 x 9  
9 x 9  
9 x 9  
9 x 9  
9 x 9  
9 x 9  

1 7 x 9  
17x9 
1 7 x 9  
17x9 
1 7 x 9  
1 7 x 9  
33x9 
33x9 
33x9 
33x9 
33x9 
33x9 

2081 
1671 
1525 
1504 
1544 
1498 
1485 
1362 
1300 
1272 
1268 
1278 
1244 
1266 
1229 
1207 
1198 
1196 

6654 
3 966 
2722 
2074 
1707 
1620 
1616 
1683 
1642 
1523 
1415 
1333 
1320 
1291 

1311 
1286 
1253 

19,252 
11,269 

6911 
4672 
3414 
2673 
2669 
2302 

Table IV. Lowest few bifurcation values of R a  for the freelfree case 

Width-to-height 
ratio Grid Bifurcation values of Ra 

1.0 9 x 9  1705 6276 14,262 18,617 
1.2 9 x 9  1233 3613 10,919 
1.4 9 x 9  1026 2379 6598 12,600 
1.6 9 x 9  93 1 1730 4382 
1.8 9 x 9  897 1357 3132 
2.0 1 7 x 9  894 1100 2269 
2.1 1 7 x 9  905 1026 2022 
2.2 1 7 x 9  927 955 1824 

- 1665 2.3 1 7 x 9  - 
2.4 1 7 x 9  882 947 1538 
2.5 1 7 x 9  848 965 1439 
2.5 33x9 - 962 1422 
2.6 17x9 820 976 1367 
2.66 17x9 808 979 1336 
2.74 17x9 794 977 1310 
2.8 1 7 x 9  785 970 1301 
2.9 1 7 x 9  773 95 1 1304 
3.0 1 7 x 9  764 926 
3.0 33x9 760 918 
3.2 33x9 751 865 
3.3657 33x9 750 827 
3.6 33x9 756 786 
3.8 33x9 - - 
4.0 33x9 738 770 

The -s indicate places where two bifurcation values were too close to be resolved separately, 
or where the range containing a bifurcation was not scanned with a particular grid 
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Figure 14. Bifurcation values versus width-to-height ratio for the free/free case 

bifurcation in the rigid/rigid case with width-to-height ratio 1, on a 9 x 9  grid, from the 
bifurcation at R a  = 7128 up to a limit point at Ra = 29,000 approximately. There is no 
physical significance to be attached to this limit point. It is simply a consequence of the 
inability of the very coarse grid to adequately model the boundary layers as the flow 
velocities increase. However it does illustrate the potential of the method for finding physical 
limit points if they exist. 
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Figure 15. Bifurcation values versus width-to-height ratio for the rigid/free case 

CONCLUDING REMARKS 

The results presented here for the Btnard problem show some of the power and flexibility of 
the techniques of parameter-stepping and bifurcation search. Since the methods are based 
upon a general finite-element program they can be easily applied to study bifurcations in any 
field problem. For example the Btnard problem could be studied without making the 
Boussinesq approximation. The techniques are being used to study a bifurcation in diverging 
channel flow.3 
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Figure 16. Expected plot of bifurcations versus width-to-height ratio. The insert shows the actual behaviour in the 
encircled region 
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